Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1226194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650071

RESUMO

Introduction: Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results: Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion: In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.

2.
Pest Manag Sci ; 79(5): 1635-1649, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36622360

RESUMO

BACKGROUND: Pyridazine pyrazolecarboxamides (PPCs) are a novel insecticide class discovered and optimized at BASF. Dimpropyridaz is the first PPC to be submitted for registration and controls many aphid species as well as whiteflies and other piercing-sucking insects. RESULTS: Dimpropyridaz and other tertiary amide PPCs are proinsecticides that are converted in vivo into secondary amide active forms by N-dealkylation. Active secondary amide metabolites of PPCs potently inhibit the function of insect chordotonal neurons. Unlike Group 9 and 29 insecticides, which hyperactivate chordotonal neurons and increase Ca2+ levels, active metabolites of PPCs silence chordotonal neurons and decrease intracellular Ca2+ levels. Whereas the effects of Group 9 and 29 insecticides require TRPV (Transient Receptor Potential Vanilloid) channels, PPCs act in a TRPV-independent fashion, without compromising cellular responses to Group 9 and 29 insecticides, placing the molecular PPC target upstream of TRPVs. CONCLUSIONS: PPCs are a new class of chordotonal organ modulator insecticide for control of piercing-sucking pests. Dimpropyridaz is a PPC proinsecticide that is activated in target insects to secondary amide forms that inhibit the firing of chordotonal organs. The inhibition occurs at a site upstream of TRPVs and is TRPV-independent, providing a novel mode of action for resistance management. © 2023 BASF Corporation. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Afídeos , Inseticidas , Animais , Inseticidas/farmacologia , Insetos , Amidas/farmacologia , Resistência a Inseticidas
3.
Mol Med ; 28(1): 61, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659174

RESUMO

Botulinum neurotoxins (BoNTs) are highly potent, select agent toxins that inhibit neurotransmitter release at motor nerve terminals, causing muscle paralysis and death by asphyxiation. Other than post-exposure prophylaxis with antitoxin, the only treatment option for symptomatic botulism is intubation and supportive care until recovery, which can require weeks or longer. In previous studies, we reported the FDA-approved drug 3,4-diaminopyridine (3,4-DAP) reverses early botulism symptoms and prolongs survival in lethally intoxicated mice. However, the symptomatic benefits of 3,4-DAP are limited by its rapid clearance. Here we investigated whether 3,4-DAP could sustain symptomatic benefits throughout the full course of respiratory paralysis in lethally intoxicated rats. First, we confirmed serial injections of 3,4-DAP stabilized toxic signs and prolonged survival in rats challenged with 2.5 LD50 BoNT/A. Rebound of toxic signs and death occurred within hours after the final 3,4-DAP treatment, consistent with the short half-life of 3,4-DAP in rats. Based on these data, we next investigated whether the therapeutic benefits of 3,4-DAP could be sustained throughout the course of botulism by continuous infusion. To ensure administration of 3,4-DAP at clinically relevant doses, three infusion dose rates (0.5, 1.0 and 1.5 mg/kg∙h) were identified that produced steady-state serum levels of 3,4-DAP consistent with clinical dosing. We then compared dose-dependent effects of 3,4-DAP on toxic signs and survival in rats intoxicated with 2.5 LD50 BoNT/A. In contrast to saline vehicle, which resulted in 100% mortality, infusion of 3,4-DAP at ≥ 1.0 mg/kg∙h from 1 to 14 d after intoxication produced 94.4% survival and full resolution of toxic signs, without rebound of toxic signs after infusion was stopped. In contrast, withdrawal of 3,4-DAP infusion at 5 d resulted in re-emergence of toxic sign and death within 12 h, confirming antidotal outcomes require sustained 3,4-DAP treatment for longer than 5 d after intoxication. We exploited this novel survival model of lethal botulism to explore neurophysiological parameters of diaphragm paralysis and recovery. While neurotransmission was nearly eliminated at 5 d, neurotransmission was significantly improved at 21 d in 3,4-DAP-infused survivors, although still depressed compared to naïve rats. 3,4-DAP is the first small molecule to reverse systemic paralysis and promote survival in animal models of botulism, thereby meeting a critical treatment need that is not addressed by post-exposure prophylaxis with conventional antitoxin. These data contribute to a growing body of evidence supporting the use of 3,4-DAP to treat clinical botulism.


Assuntos
Antitoxinas , Botulismo , Amifampridina/uso terapêutico , Animais , Antídotos/farmacologia , Antídotos/uso terapêutico , Antitoxinas/uso terapêutico , Botulismo/tratamento farmacológico , Camundongos , Paralisia/tratamento farmacológico , Ratos
4.
Sci Transl Med ; 13(575)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408188

RESUMO

Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.


Assuntos
Toxinas Botulínicas Tipo A , Botulismo , Anticorpos de Domínio Único , Animais , Botulismo/tratamento farmacológico , Cobaias , Camundongos , Modelos Animais , Neurotoxinas
5.
Arch Toxicol ; 94(11): 3877-3891, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32691075

RESUMO

Organophosphorus (OP) compounds inhibit central and peripheral acetylcholinesterase (AChE) activity, overstimulating cholinergic receptors and causing autonomic dysfunction (e.g., bronchoconstriction, excess secretions), respiratory impairment, seizure and death at high doses. Current treatment for OP poisoning in the United States includes reactivation of OP-inhibited AChE by the pyridinium oxime 2-pyridine aldoxime (2-PAM). However, 2-PAM has a narrow therapeutic index and its efficacy is confined to a limited number of OP agents. The bis-pyridinium oxime MMB4, which is a more potent reactivator than 2-PAM with improved pharmaceutical properties and therapeutic range, is under consideration as a potential replacement for 2-PAM. Similar to other pyridinium oximes, high doses of MMB4 lead to off-target effects culminating in respiratory depression and death. To understand the toxic mechanisms contributing to respiratory depression, we evaluated the effects of MMB4 (0.25-16 mM) on functional and neurophysiological parameters of diaphragm and limb muscle function in rabbits and rats. In both species, MMB4 depressed nerve-elicited muscle contraction by blocking muscle endplate nicotinic receptor currents while simultaneously prolonging endplate potentials by inhibiting AChE. MMB4 increased quantal content, endplate potential rundown and tetanic fade during high frequency stimulation in rat but not rabbit muscles, suggesting species-specific effects on feedback mechanisms involved in sustaining neurotransmission. These data reveal multifactorial effects of MMB4 on cholinergic neurotransmission, with the primary toxic modality being reduced muscle nicotinic endplate currents. Evidence of species-specific effects on neuromuscular function illustrates the importance of comparative toxicology when studying pyridinium oximes and, by inference, other quaternary ammonium compounds.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Músculos/efeitos dos fármacos , Intoxicação por Organofosfatos/tratamento farmacológico , Oximas/efeitos adversos , Transmissão Sináptica/efeitos dos fármacos , Animais , Reativadores da Colinesterase/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Masculino , Compostos de Pralidoxima/uso terapêutico , Coelhos , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/induzido quimicamente , Especificidade da Espécie
6.
JCI Insight ; 5(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31996484

RESUMO

Botulinum neurotoxins (BoNTs) are potent neuroparalytic toxins that cause mortality through respiratory paralysis. The approved medical countermeasure for BoNT poisoning is infusion of antitoxin immunoglobulins. However, antitoxins have poor therapeutic efficacy in symptomatic patients; thus, there is an urgent need for treatments that reduce the need for artificial ventilation. We report that the US Food and Drug Administration-approved potassium channel blocker 3,4-diaminopyridine (3,4-DAP) reverses respiratory depression and neuromuscular weakness in murine models of acute and chronic botulism. In ex vivo studies, 3,4-DAP restored end-plate potentials and twitch contractions of diaphragms isolated from mice at terminal stages of BoNT serotype A (BoNT/A) botulism. In vivo, human-equivalent doses of 3,4-DAP reversed signs of severe respiratory depression and restored mobility in BoNT/A-intoxicated mice at terminal stages of respiratory collapse. Multiple-dosing administration of 3,4-DAP improved respiration and extended survival at up to 5 LD50 BoNT/A. Finally, 3,4-DAP reduced gastrocnemius muscle paralysis and reversed respiratory depression in sublethal models of serotype A-, B-, and E-induced botulism. These findings make a compelling argument for repurposing 3,4-DAP to symptomatically treat symptoms of muscle paralysis caused by botulism, independent of serotype. Furthermore, they suggest that 3,4-DAP is effective for a range of botulism symptoms at clinically relevant time points.


Assuntos
Amifampridina/farmacologia , Amifampridina/uso terapêutico , Antitoxinas/farmacologia , Antitoxinas/uso terapêutico , Botulismo/tratamento farmacológico , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Amifampridina/química , Animais , Antitoxinas/química , Toxinas Botulínicas , Toxinas Botulínicas Tipo A/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Dose Letal Mediana , Camundongos , Músculo Esquelético , Paralisia/tratamento farmacológico , Bloqueadores dos Canais de Potássio/química , Sorogrupo , Estados Unidos , United States Food and Drug Administration
7.
Brain Res ; 1693(Pt A): 55-66, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625118

RESUMO

Mutations in the nuclear localization signal of the RNA binding protein FUS cause both Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). These mutations result in a loss of FUS from the nucleus and the formation of FUS-containing cytoplasmic aggregates in patients. To better understand the role of cytoplasmic FUS mislocalization in the pathogenesis of ALS, we identified a population of cholinergic neurons in Drosophila that recapitulate these pathologic hallmarks. Expression of mutant FUS or the Drosophila homolog, Cabeza (Caz), in class IV dendritic arborization neurons results in cytoplasmic mislocalization and axonal transport to presynaptic terminals. Interestingly, overexpression of FUS or Caz causes the progressive loss of neuronal projections, reduction of synaptic mitochondria, and the appearance of large calcium transients within the synapse. Additionally, we find that overexpression of mutant but not wild type FUS results in a reduction in presynaptic Synaptotagmin, an integral component of the neurotransmitter release machinery, and mutant Caz specifically disrupts axonal transport and induces hyperexcitability. These results suggest that FUS/Caz overexpression disrupts neuronal function through multiple mechanisms, and that ALS-causing mutations impair the transport of synaptic vesicle proteins and induce hyperexcitability.


Assuntos
Proteínas de Drosophila/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/fisiologia , Plasticidade Neuronal/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Animais Geneticamente Modificados , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dendritos/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Humanos , Neurônios Motores/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/fisiologia
8.
Toxicol Appl Pharmacol ; 341: 77-86, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29366638

RESUMO

Botulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that prevent neurotransmitter release from peripheral nerve terminals by cleaving presynaptic proteins required for synaptic vesicle fusion. The ensuing neuromuscular paralysis causes death by asphyxiation. Although no antidotal treatments exist to block toxin activity within the nerve terminal, aminopyridine antagonists of voltage-gated potassium channels have been proposed as symptomatic treatments for botulism toxemia. However, clinical evaluation of aminopyridines as symptomatic treatments for botulism has been inconclusive, in part because mechanisms responsible for reversal of paralysis in BoNT-poisoned nerve terminals are not understood. Here we measured the effects of 3,4-diaminopyridine (DAP) on phrenic nerve-elicited diaphragm contraction and end-plate potentials at various times after intoxication with BoNT serotypes A, B, or E. We found that DAP-mediated increases in quantal content promote neurotransmission from intoxicated nerve terminals through two functionally distinguishable mechanisms. First, DAP increases the probability of neurotransmission at non-intoxicated release sites. This mechanism is serotype-independent, becomes less effective as nerve terminals become progressively impaired, and remains susceptible to ongoing intoxication. Second, DAP elicits persistent production of toxin-resistant endplate potentials from nerve terminals fully intoxicated by BoNT/A, but not serotypes B or E. Since this effect appears specific to BoNT/A intoxication, we propose that DAP treatment enables BoNT/A-cleaved SNAP-25 to productively engage in fusogenic release by increasing the opportunity for low-efficiency fusion events. These findings have important implications for DAP as a botulism therapeutic by defining conditions under which DAP may be clinically effective in reversing botulism symptoms.


Assuntos
4-Aminopiridina/análogos & derivados , Toxinas Botulínicas Tipo A/toxicidade , Diafragma/efeitos dos fármacos , Paralisia Respiratória/induzido quimicamente , Paralisia Respiratória/tratamento farmacológico , 4-Aminopiridina/farmacologia , 4-Aminopiridina/uso terapêutico , Amifampridina , Animais , Diafragma/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Paralisia Respiratória/fisiopatologia
9.
Sci Rep ; 7(1): 15862, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158500

RESUMO

Botulinum neurotoxins (BoNTs) are highly potent toxins that cleave neuronal SNARE proteins required for neurotransmission, causing flaccid paralysis and death by asphyxiation. Currently, there are no clinical treatments to delay or reverse BoNT-induced blockade of neuromuscular transmission. While aminopyridines have demonstrated varying efficacy in transiently reducing paralysis following BoNT poisoning, the precise mechanisms by which aminopyridines symptomatically treat botulism are not understood. Here we found that activity-dependent potentiation of presynaptic voltage-gated calcium channels (VGCCs) underlies 3,4-diaminopyridine (3,4-DAP)-mediated rescue of neurotransmission in central nervous system synapses and mouse diaphragm neuromuscular junctions fully intoxicated by BoNT serotype A. Combinatorial treatments with 3,4-DAP and VGCC agonists proved synergistic in restoring suprathreshold endplate potentials in mouse diaphragms fully intoxicated by BoNT/A. In contrast, synapses fully intoxicated by BoNT serotypes D or E were refractory to synaptic rescue by any treatment. We interpret these data to propose that increasing the duration or extent of VGCC activation prolongs the opportunity for low-efficiency fusion by fusogenic complexes incorporating BoNT/A-cleaved SNAP-25. The identification of VGCC agonists that rescue neurotransmission in BoNT/A-intoxicated synapses provides compelling evidence for potential therapeutic utility in some cases of human botulism.


Assuntos
Toxinas Botulínicas Tipo A/toxicidade , Botulismo/genética , Canais de Cálcio/genética , Paralisia/genética , Proteína 25 Associada a Sinaptossoma/genética , Amifampridina/metabolismo , Animais , Toxinas Botulínicas Tipo A/genética , Botulismo/patologia , Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/genética , Humanos , Camundongos , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Paralisia/fisiopatologia , Sorogrupo , Sinapses/genética , Sinapses/patologia , Transmissão Sináptica/genética
10.
Methods Cell Biol ; 131: 277-309, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794520

RESUMO

Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila.


Assuntos
Transporte Axonal/genética , Axônios/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Transporte Axonal/fisiologia , Dendritos/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complexo Dinactina , Dineínas/genética , Larva/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética
11.
Nature ; 525(7567): 56-61, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26308891

RESUMO

The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Expansão das Repetições de DNA/genética , Fases de Leitura Aberta/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Quadruplex G , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Oligonucleotídeos Antissenso/genética , RNA/genética , RNA/metabolismo
12.
Hum Mol Genet ; 23(14): 3810-22, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24569165

RESUMO

Mutations in the RNA binding protein Fused in sarcoma (FUS) are estimated to account for 5-10% of all inherited cases of amyotrophic lateral sclerosis (ALS), but the function of FUS in motor neurons is poorly understood. Here, we investigate the early functional consequences of overexpressing wild-type or ALS-associated mutant FUS proteins in Drosophila motor neurons, and compare them to phenotypes arising from loss of the Drosophila homolog of FUS, Cabeza (Caz). We find that lethality and locomotor phenotypes correlate with levels of FUS transgene expression, indicating that toxicity in developing motor neurons is largely independent of ALS-linked mutations. At the neuromuscular junction (NMJ), overexpression of either wild-type or mutant FUS results in decreased number of presynaptic active zones and altered postsynaptic glutamate receptor subunit composition, coinciding with a reduction in synaptic transmission as a result of both reduced quantal size and quantal content. Interestingly, expression of human FUS downregulates endogenous Caz levels, demonstrating that FUS autoregulation occurs in motor neurons in vivo. However, loss of Caz from motor neurons increases synaptic transmission as a result of increased quantal size, suggesting that the loss of Caz in animals expressing FUS does not contribute to motor deficits. These data demonstrate that FUS/Caz regulates NMJ development and plays an evolutionarily conserved role in modulating the strength of synaptic transmission in motor neurons.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Neurônios Motores/metabolismo , Junção Neuromuscular/fisiologia , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transmissão Sináptica , Fator de Transcrição TFIID/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Genes Letais , Humanos , Junção Neuromuscular/embriologia , Fenótipo , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , Fator de Transcrição TFIID/genética
13.
Nat Neurosci ; 16(9): 1238-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23912945

RESUMO

Topoisomerases are crucial for solving DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3ß (Top3ß) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein that is deficient in fragile X syndrome and is known to regulate the translation of mRNAs that are important for neuronal function, abnormalities of which are linked to autism. Notably, the FMRP-Top3ß interaction is abolished by a disease-associated mutation of FMRP, suggesting that Top3ß may contribute to the pathogenesis of mental disorders. Top3ß binds multiple mRNAs encoded by genes with neuronal functions linked to schizophrenia and autism. Expression of one such gene, that encoding protein tyrosine kinase 2 (ptk2, also known as focal adhesion kinase or FAK), is reduced in the neuromuscular junctions of Top3ß mutant flies. Synapse formation is defective in Top3ß mutant flies and mice, as well as in FMRP mutant flies and mice. Our findings suggest that Top3ß acts as an RNA topoisomerase and works with FMRP to promote the expression of mRNAs that are crucial for neurodevelopment and mental health.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Junção Neuromuscular/genética , Animais , Animais Geneticamente Modificados , Células Cultivadas , Galinhas , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , Drosophila , Proteínas de Drosophila/genética , Embrião de Mamíferos , Olho/citologia , Olho/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Proteínas de Ligação a RNA/metabolismo , Transfecção
14.
Neuron ; 74(2): 344-60, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22542187

RESUMO

p150(Glued) is the major subunit of dynactin, a complex that functions with dynein in minus-end-directed microtubule transport. Mutations within the p150(Glued) CAP-Gly microtubule-binding domain cause neurodegenerative diseases through an unclear mechanism. A p150(Glued) motor neuron degenerative disease-associated mutation introduced into the Drosophila Glued locus generates a partial loss-of-function allele (Gl(G38S)) with impaired neurotransmitter release and adult-onset locomotor dysfunction. Disruption of the p150(Glued) CAP-Gly domain in neurons causes a specific disruption of vesicle trafficking at terminal boutons (TBs), the distal-most ends of synapses. Gl(G38S) larvae accumulate endosomes along with dynein and kinesin motor proteins within swollen TBs, and genetic analyses show that kinesin and p150(Glued) function cooperatively at TBs to coordinate transport. Therefore, the p150(Glued) CAP-Gly domain regulates dynein-mediated retrograde transport at synaptic termini, and this function of dynactin is disrupted by a mutation that causes motor neuron disease.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Terminações Pré-Sinápticas/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Complexo Dinactina , Eletrofisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Larva , Potenciais da Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Modelos Biológicos , Doença dos Neurônios Motores/genética , Neurônios Motores/fisiologia , Junção Neuromuscular/genética , Junção Neuromuscular/fisiologia , Fotodegradação , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Transporte Proteico/genética , Transmissão Sináptica/genética
15.
J Cell Sci ; 125(Pt 16): 3752-64, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22573823

RESUMO

Neuronal function depends on the retrograde relay of growth and survival signals from the synaptic terminal, where the neuron interacts with its targets, to the nucleus, where gene transcription is regulated. Activation of the Bone Morphogenetic Protein (BMP) pathway at the Drosophila larval neuromuscular junction results in nuclear accumulation of the phosphorylated form of the transcription factor Mad in the motoneuron nucleus. This in turn regulates transcription of genes that control synaptic growth. How BMP signaling at the synaptic terminal is relayed to the cell body and nucleus of the motoneuron to regulate transcription is unknown. We show that the BMP receptors are endocytosed at the synaptic terminal and transported retrogradely along the axon. Furthermore, this transport is dependent on BMP pathway activity, as it decreases in the absence of ligand or receptors. We further demonstrate that receptor traffic is severely impaired when Dynein motors are inhibited, a condition that has previously been shown to block BMP pathway activation. In contrast to these results, we find no evidence for transport of phosphorylated Mad along the axons, and axonal traffic of Mad is not affected in mutants defective in BMP signaling or retrograde transport. These data support a model in which complexes of activated BMP receptors are actively transported along the axon towards the cell body to relay the synaptogenic signal, and that phosphorylated Mad at the synaptic terminal and cell body represent two distinct molecular populations.


Assuntos
Transporte Axonal/fisiologia , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Dineínas do Axonema/metabolismo , Axônios/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/genética , Endossomos/genética , Endossomos/metabolismo , Neurônios Motores/citologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...